RHIC Energy Scan

Nu Xu Lawrence Berkeley National Laboratory

B. Jacak, V. Koch, STARs ...

INT Workshop on "QCD Critical Point"

V. Koch, G. Roland, and M. Stephanov July 28 - Aug. 22, 2008

http://int.phys.washington.edu/PROGRAMS/08-2b.html

sQGP and Phase Diagram

RHIC at 200 GeV Au+Au collisions, strongly interacting matter formed:

Jet energy loss R_{AA} Strong collectivity v_2 Hadronization via coalescence - n_q scaling

Questions:

When (at which energy) does this transition happen?

What does the QCD phase diagram look like?

The QCD Critical Point

- LGT prediction on the transition temperature T_c is robust.
- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.
- Experimental evidence for either the critical point or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization has been assumed

```
M. Stephanov, K. Rajagopal, and E. Shuryak, PRL <u>81</u>, 4816(98)
K. Rajagopal, PR <u>D61</u>, 105017 (00)
http://www.er.doe.gov/np/nsac/docs/Nuclear -Science.Low-Res.pdf
```


QCD Phase Diagram

- RHIC injection energy 19.6 GeV

STAR Detector (2010)

Lattice Results* Indicate:

Prediction the cross-over of T_C at zero chemical potential is most likely correct.

Most likely the region for the QCD critical point*:

$$\mu_{\text{B}} \ge 200 \text{ MeV} \implies$$

$$40 \ge \sqrt{s} \ge 5 \text{ GeV}$$

- •In all Lattice calculations, global termalization are assumed.
- S. Gupta et al.

Experimental Observables:

On Lattice: a spike in susceptibility means long range correlation at the critical point.

The equilibration of the medium is assumed in all Lattice calculations.

<u>In Experiment:</u> measure the correlation function of baryons or protons.

$$K_B = \frac{\left\langle N^4 \right\rangle - 3\left\langle N^2 \right\rangle^2}{\left\langle N^2 \right\rangle}$$

- Kurtosis analysis for protons
- proton-proton correlations
- d/p => Baryon phase density

Partonic vs. Hadronic Phases

Two Step Approach

√s _{NN} (GeV)	PHENIX	STAR	
62.4	✓		
39	✓	✓	
28	✓	✓	
22.4*	✓		future
17.3		✓	
12.3		✓	
8.6		✓	
7.7		✓	
6.1		✓	
5.0		✓	

Energy Dependence

From Westfall and Sorensen

K/pi fluctuations

Balance function

Baryon density

Note: Freeze-out T_{fo} , β_T , v_2 , ... vs. energy also show the dramatic change between $\sqrt{s} = 5$ and 20 GeV.

Two Step Approach

Step I:

First RHIC Energy Scan: FY10, 8-10 weeks. 4 weeks above the injection energy and 5-6 week below.

Strategy: (a) disappearance of sQGP signal (b) appearance of critical behavior

Step II: FY12 (or later)

Strategy: Focus on the region where the (a) and (b) cross each other.

Search for the QCD Critical Point at RHIC Explore the QCD Phase Diagram

A brief summary of the INT workshop

(I) Introduction

I-1. Theory status: V. Koch, K. Rajagopal, M. Stephanov, ...

I-2. Lattice Gauge Theory Results: ...

(II) Experimental Status

II-1. RHIC status: G. Stephanse II-2. PHENIX status: K. Homma

II-3. STAR status: H. Cains and G. Odyniec

II-4 Physics background: G. Roland

Signals		Observables	# of events
1	C.P. (lattice light quark	- Kurtosis analysis for protons	
	susceptibility χ_{q_i} 1 st)	- proton-proton correlations	
		- Kan-proton correlations	
		- d/p => Baryon phase density	
2	C.P.	- anti-p/p (y _T)	
3	C.P. [2]	$\langle p_T \rangle, \langle N_{ch} \rangle, \langle K/\pi \rangle, \langle p/\pi \rangle, \langle p/K \rangle$,	
4	1 st Order, light σ [3,4]	Collapse of proton v_1 and v_2	
n+1	Parity V. [5]		
n+2	C.P.; phase transition(?)	- 2-dimentional correlation	
		analysis Δφ - Δη	
n+3	Partonic vs. hadronic	PID hadron and <i>\phi</i> -meson v ₂	
n+4	???	Balance-function	